
Cuboid Partitioning for Hierarchical Coded Matrix Multiplication
Shahrzad Kiani, Nuwan Ferdinand, Stark C. Draper Decompose matrix multiplication into basic operations  

represented by unit cubes

Introduction: Distributed matrix multiplication

View the product 𝑨𝑩 as a rectangular cuboid

Results and conclusion: H-poly vs. S-poly vs. Poly

Abstract

Coded matrix multiplication is a technique to enable straggler-resistant

multiplication of large matrices in distributed computing systems. In this work,

we first present a conceptual framework to represent the division of work

amongst processors in coded matrix multiplication as a cuboid partitioning

problem. This framework allows us to unify existing methods and motivates new

techniques. Building on this framework, we apply the idea of hierarchical coding

(Ferdinand & Draper, 2018) to coded matrix multiplication. The hierarchical

scheme we develop is able to exploit the work completed by all processors (fast

and slow), rather than ignoring the slow ones, even if the amount of work

completed by stragglers is much less than that completed by the fastest workers.

On Amazon EC2, we achieve a 37% improvement in average finishing time

compared to non-hierarchical schemes.

H-poly exploits work done by all workers, including stragglers.  

H-poly realizes 60% improvement in expected finishing time compared to poly. 

H-poly has lower decoding time compared to sum-rate polynomial coding (S-poly).

Challenge: Stragglers delay computation 

Solution: Distributed coded matrix multiplication (DCMM) 
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Goal: Compute 𝐶 = 𝐴𝐵, where 𝐴 ∈ ℝ 𝑁𝑥×𝑁𝑧 , 𝐵 ∈ ℝ 𝑁𝑧×𝑁𝑦 , and this product

requires 𝒪(𝑁𝑥𝑁𝑧𝑁𝑦) basic operations

utilizes 𝒪(𝑁𝑥𝑁𝑧 +𝑁𝑥𝑁𝑦 + 𝑁𝑧𝑁𝑦) memory

Parallelization: Serial matrix multiplication impractical → need to parallelize

Distributed matrix multiplication: A master and 𝑁 workers (e.g., 𝑁=2 below)
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Novel strategies to exploit stragglers

# of      = 2 

Standard approach: Throw

away half-completed work.
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Hierarchical coding [Ferdinand

& Draper ISIT’18]: (i) Split into

smaller subtasks, (ii) collect into

layers of subtasks, and (iii) code

with each layer.

Sum-rate coding [Kiani et al.

ISIT’18]: (i) Split into smaller

subtasks, and (ii) code across all

subtasks.
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Phase 1: Data partitioning and cuboid visualization 

step 1: split job into 𝐿 layers of computation

step 2: divide 𝑙th layer into 𝐾𝑙 sub-computations

Phase 2: Data encoding and distribution. Encode 𝑙th layer using an (𝑁, 𝐾𝑙) code.

Phase 3: Worker computation and decoding. Any 𝑅𝑙 encoded completed tasks can 

be decoded to recover 𝑙th layer of desired matrix product.

(𝐿: # layers, 𝑁:# workers, 𝐾𝑙: information dimension, 𝑅𝑙: recovery threshold)

Example: Standard polynomial coding approach (poly)

Hierarchical coded matrix multiplication
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Straggling compute nodes

• unpredictably slow nodes in distributed systems

• observed in cloud computing systems, such as 

Amazon EC2

Data partitioning

E.g., 𝐿 = 3,𝑁 = 3, (𝐾𝑙 , 𝑅𝑙) ∈ { 3,3 , 2,2 , (1,1)}

Shifted-exponential distribution, 𝑁=200 EC2 experiment, 𝑁𝑥 = 𝑁𝑧 = 𝑁𝑦 = 1000
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Cuboid visualization of data partitioning phase in DCMM
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