
Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Successive Approximation for Coded
Matrix Multiplication

Shahrzad Kianidehkordi and Stark C. Draper

IEEE International Symposium on Information Theory

June 28, 2022

1 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Outline

1 Introduction

2 Group-wise SAC

3 Layer-wise SAC

4 Results and conclusion

2 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Speed Up Large-Scale Matrix Multiplication

Motivation:

Matrices are fundamental mathematical structures for representing data and can
be too large to fit in memory.

Matrix multiplication is a core building block for numerous scientific computing
and can be too time consuming.

⇒ Large-scale matrix multiplication needs to be parallelized across multiple working
nodes and/or approximated.
Problem of stragglers: Some workers compute and/or communicate too slowly,
making delay into the parallel system.
Combine coded and approximated computing: While most efforts on coded
computing to date have focused on exact recovery of the target computation, in lots of
applications (gradient descent, etc.) inexact will suffice.
⇒ We can tradeoff speed and accuracy.

3 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Coded computing using polynomial bases

Notations: N workers and a master multiply A ∈ RNx×Nz and B ∈ RNz×Ny .
Step 1/5: Master partitions A and B into submatrices.

Exp) In MatDot, A vert, B horizon, AB to sum of K outer products (e.g., K = 2).

𝐴1 𝐴2 =
𝐵1
𝐵2

𝐴1 𝐵1 𝐴2+ 𝐵2× × ×

Step 2/5: Master encodes data using poly basis: {Tk(x)}Kk=1.

Produce encoding polys A(x) and B(x).
Exp) In MatDot, Tk(x) are monomial basis (e.g., K = 2).

= 𝐴1 𝐵1𝐴2+ 𝐵2𝑥 ,𝐴(𝑥) 𝑥+=𝐵 𝑥

Evaluate (A(x),B(x)) at x ∈ {xn}Nn=1; send (A(xn),B(xn)) to worker n ∈ [N].
4 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Coded computing using polynomial bases (con’t)

Step 3/5: Worker n computes A(xn)B(xn); sends it to the master.
Step 4/5: Master decodes A(xn)B(xn) to recover {Cr}Rr=1 coeffs.

Exp) MatDot solves Vander system of equations (e.g., R = 3)

𝐴1 𝐵1𝐴2+ 𝐵2𝑥)𝐴(𝑥) 𝑥+=𝐵 𝑥 ((()= 𝑥 𝑥2+ +

𝐶1

𝐶2
𝐶3

C1 = A1B2,C2 = A1B1 + A2B2,C3 = A2B1A(xi1)B(xi1)
A(xi2)B(xi2)
A(xi3)B(xi3)

 =

1 xi1 x2i1
1 xi2 x2i2
1 xi3 x2i3

C1

C2

C3

Step 5/5: In some codes, master needs post-decoding:

Interpolate A(x)B(x) at x ∈ {yk}Kk=1; calculate AB =
∑K

k=1 αkA(yk)B(yk).
5 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Benchmark: ε-Approximate MatDot (εAMD) [Jeong et al]

Exp: K = 3, use same enc polys as MatDot.

𝐴1 𝐵1𝐴2+ 𝐵2𝑥𝐴(𝑥) 𝑥2+=𝐵 𝑥 ((()

= 𝑥 𝑥4+ +

𝐶1

𝐶2
𝐶5

)𝐴3+ 𝑥2 𝑥+ 𝐵3

𝑥2+

𝐶3

𝑥3+

𝐶4
remainder

Idea: Remainder is small if evaluate A(x), B(x) at small x (‖Ai‖F, ‖Bi‖F bounded).

Approximate recovery poly is P(x) := C1 + C2x + C3x
2 ≈ A(x)B(x) if x is small.

The desired AB product equals C3 = (A1B1 + A2B2 + A3B3)

P(x) is degree-2 ⇒ Approximate recovery threshold is R1 = 3.

A(x)B(x) is degree-4 ⇒ Recovery threshold is R = 5.
6 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Group-wise SAC, D = 2

Goal: Extend single-layer approx of εAMD by getting mid coeff to show up elsewhere.
Idea # 1: Carefully re-order the coeffs of enc polys.

𝐴1 𝐵1𝐴2+ 𝐵2𝑥𝐴(𝑥) 𝑥2+=𝐵 𝑥 ((()

= 𝑥 𝑥4+ +

𝐶1

𝐶2
𝐶5

)𝐴3+ 𝑥2 𝑥+𝐵3

𝑥2+

𝐶3

𝑥3+

𝐶4

𝐴1 𝐵1𝐴2+ 𝐵2𝑥𝐴(𝑥) 𝑥2+=𝐵 𝑥 ((())𝐴3+ 𝑥2 𝑥+ 𝐵3𝝐AMD:

G-SAC:

Approximate recovery polys are Pr (x) =
∑r

i=1 Cix
i−1 ≈ A(x)B(x).

AB equals C2 = A1B1 + A2B2 plus C5 = A3B3.
Pr (x) is degree-r ⇒ Approximate recovery threshold is Rr = r + 1.
A(x)B(x) is degree-4 ⇒ Recovery threshold is R = 5.

7 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Group-wise SAC, D = 3

Goal: Generalize to multi-group SAC in order to recover lower resolutions earlier.
Idea # 2: Inject delays amongst coeffs to eliminate interference.

𝐴1 𝐵1𝐴2+ 𝐵2𝑥𝐴(𝑥) 𝑥2+=𝐵 𝑥 ((()

= 𝑥 𝑥4+ +

𝐶1

𝐶2 𝐶5

)𝐴3+ 𝑥2 𝑥+𝐵3

𝑥2+

𝐶3

𝑥3+

𝐶4

G-SAC (𝑫 = 𝟐):

𝐴1 𝐵1𝐴2+ 𝐵2𝑥𝐴(𝑥) 𝑥3 +=𝐵 𝑥 ((())𝐴3+ 𝑥3 𝑥+𝐵3G-SAC (𝑫 = 𝟑): 0 𝑥2+ +0 𝑥2

0 𝑥5+ + 𝑥6

𝐶7

AB equals C1 = A1B1 plus C3 = A2B2 plus C7 = A3B3.

∀r ∈ [5], degree of Pr (x) =
∑r

i=1 Cix
i−1 is (r − 1) ⇒ Rr = r .

A(x)B(x) is degree-6 ⇒ Recovery threshold is R = 7.

8 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Prior coding schemes requiring post-decoding

In both, A(x) =
∑K

k=1 AkTk−1(x), B(x) =
∑K

k=1 BkTk−1(x); Ti (x) is not monomial.

OrthoMatDot [Fahim et al]:

Basis: Orthonormal basis∫ 1

−1
Ti (x)Tj(x)w(x)dx = I(i = j)

Enc: Eval A(x),B(x) at x ∈ {TN(x) roots}
Dec: Invert Cheby Vander to get A(x)B(x)

Post-dec: Gauss quad

AB =
∫ 1
−1 A(x)B(x)w(x)dx

=
∑K

k=1
2
KA(yk)B(yk)

where yk ∈ {K roots of TK (x)}
(+) Mitigates ill-conditioning issue.

Lagrange [Yu et al]:

Basis: Lagrange basis

Ti (x) =
∏

j 6=i
(x−yj)
(yi−yj) , for i ∈ [K]

Enc: Eval at arbitrary
x ∈ XLag, s.t. |XLag| = N
y ∈ YLag, s.t. |YLag| = K

Dec: Invert Vander to get A(x)B(x)

Post-dec: yk zeros-out cross terms,∑K
k=1 A(yk)B(yk) = AB

(+) Extends to multi-variate polynomials and
security and privacy.

9 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Layer-wise SAC

Goal: Apply SAC to codes with post-decoding, (e.g., OMD, Lag)
Idea: Pick {xn}Nn=1 used by enc to be ε-close (a small perturbation) of {yk}Kk=1 of dec.

𝑦1

𝑦2

2𝜖

𝐴 𝑥 𝐵(𝑥)

𝑥

2𝜖

𝑦3

2𝜖

𝐴 𝑦1,𝑖 𝐵(𝑦1,𝑖)

𝒚𝟐,𝒊′

𝐴 𝑦2,𝑖′ 𝐵 𝑦2,𝑖′

𝐴 𝑦2,𝑖′′ 𝐵 𝑦2,𝑖′′ 𝒚𝟐,𝒊′′

𝒚𝟏,𝒊

OMD/Lag

𝑁

𝑥1 𝑥2 … 𝑥𝑁

Exact Rec. 𝑅 = 5

𝑦1 𝑦2 𝑦3

SAC (𝜺 > 𝟎)
via OMD/Lag

𝑦1,1 … 𝑦
1,
𝑁

3

𝑦2,1 … 𝑦
2,
𝑁

3

𝑦3,1 … 𝑦
3,
𝑁

3 𝑦1 𝑦2 𝑦3

𝑦2

Exact Rec., 𝑅 = 5

Approx Rec 𝑅3 = 3

𝑦1𝑁/3 𝑁/3 𝑁/3

AB =
3∑

k=1

αkA(yk)B(yk) ≈ β
(
α1

A(y1,i)B(y1,i)

1
+ α2

A(y2,i ′)B(y2,i ′) + A(y2,i ′′)B(y2,i ′′)

2

)
General: Div workers into K splits. Avg results from each split to improve estimate.

10 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Layer-wise SAC: Hybridize repetition and coded computing

Like Rep codes, workers in split k ∈ [K] contribute to A(yk)B(yk) recovery.

Like coded computing, guarantee exact rec only when a few workers report in.

LSAC(ε = 0) slightly better estimates, but waits longer for exact recovery.

SAC (𝜺 = 𝟎)
via OMD/Lag

(𝑁/3,1) (𝑁/3,1) (𝑁/3,1)

𝑦1 … 𝑦1 𝑦2 … 𝑦2 𝑦3 … 𝑦3 Exact Rec 𝑅 = 𝑁 −
𝑁

3
+ 1

SAC (𝜺 > 𝟎)
via OMD/Lag

𝑦1,1 … 𝑦
1,
𝑁

3

𝑦2,1 … 𝑦
2,
𝑁

3

𝑦3,1 … 𝑦
3,
𝑁

3 𝑦1 𝑦2 𝑦3

𝑦2

Exact Rec, 𝑅 = 5

Approx Rec 𝑅3 = 3

𝑦1𝑁/3 𝑁/3 𝑁/3

𝑦2
Approx Rec 𝑅3 = 3

𝑦1

𝑦1 𝑦2 𝑦3

However, compared to OMD we loose numerical benefits of Cheby Vander dec.

11 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Relative error vs. approximation threshold

Settings:

N = 40, K = 8, A ∈ R100×8000,B ∈ R8000×100,
All entries ∼ N (0, 1).

MMD: (30,6) MatDot & (10,2) MatDot.

2-GSAC: K1 ∈ {6, 8}, x ∈ {0.15e
i2πn
N }Nn=1.

LSAC-OMD: ε ∈ { 5
104 , 0}, yk,i ∈ µ

(8),cheby
k ± ε.

0 5 10 15 20 25
Completed workers (n)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag
e
re
la
tiv
e
er
ro
r

εAMD,
multi MD, K1=6
G-SAC, K1=6
G-SAC, K1=8
L-SAC via OMD, β=1, ε=0.0008
L-SAC via OMD, β=1, ε=0

Takeaways:

G-SAC,K1 = 8: similar to εAMD upto n = 8, improve as n ↑.
G-SAC,K1 = 6: early estim. n = 6, better estim. n ≥ 14.

L-SAC via OMD: contin. improv. since n = 1.

If ε = 0, slight. better estim., later exact recovery.
12 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Conclusion and future works

Conclusion:

G-SAC and L-SAC enable approximation in coded computing, extending
approximate procedure of εAMD to multiple layers.

Compared to εAMD, SAC achieves better tradeoff between approximate threshold
and relative error.

Some possible future works:

Apply SAC to more practical applications (beyond matrix multiplication) such as
training deep neural networks.

Extend SAC to other coding schemes, such as Polynomial and Product codes.

Study numerically stability of SAC methods and explore possible numerical stable
coding schemes building on SAC.

13 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

References

Full version: S. Kiani and S. C. Draper, “Successive Approximation for Coded Matrix
Multiplication,” arXiv:2201.03486.

N. Ferdinand and S. C. Draper, “Anytime coding for distributed computation,” in IEEE Annual
Allerton Conf. on Commun., Control, and Comput., 2016.

S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, “On the optimal
recovery threshold of coded matrix multiplication,” IEEE Trans. on Inf. Theory, 2019.

H. Jeong, A. Devulapalli, V. R. Cadambe, and F. P. Calmon, “ε approximate coded matrix
multiplication is nearly twice as efficient as exact multiplication,” IEEE J. Sel. Areas Inf. Theory,
2021.

M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded computing,” IEEE Trans.
on Inf. Theory, 2021.

Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr, “Lagrange
coded computing: Optimal design for resiliency, security, and privacy,” in Int. Conf. on Artificial
Intelligence and Statistics (AISTATS), 2019.

13 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Effect of correlation (Additional)

Settings:

n = 8.

LSAC-Lag: ε = 3.33× 10−2,
yk,i ε-close to k.

Ak = λA(0) + A
(1)
k ,

Bk = λB(0) + B
(1)
k ,

A(0), . . . ,B
(1)
k ∼ N (0, 1). 10−2 100 102

Degree of correlation (λ)

10 2

10 1

Av
er
ag
e
re
la
tiv
e
er
ro
r

L-SAC, Lag, β8
G-SAC, K1=6, β= 7

4
L-SAC, Lag, β=1
G-SAC, K1=6, β=1
εAMD

Takeaways:

2-GSAC and LSAC-Lag better estim. than εAMD if highly correlated (λ large)
and parameters set optimally.

13 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Relative Err. vs. Approx. Threshold (Additional)

Settings:

N = 24, K = 8, A,B ∼ N (0, 1),
A,B : (6× 102, 9× 103, 6× 102).

LSAC-OMD: ε ∈ {3× 10−4, 0}, yk,i ε-close to

µ
(8),cheby
k .

LSAC-Lag: ε = 10−2, ε-close to k .

εAMD: x ∈ {0.15e
i2πn
N }Nn=1. 0 5 10 15 20 25

Completed workers (n)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e
re
la
tiv

e
er
ro
r εAMD,

ACDC via Lag, β=1, ε=0.01
ACDC via OMD, β=1, ε=0.0003
ACDC via Lag, β=1, ε=0
ACDC via OMD, β=1, ε=0

Takeaways:

LSAC-Lag ε > 0: contin improv from n = 1. Better than εAMD n < 8.

LSAC-OMD ε > 0: contin improv from n = 1. Better than εAMD n < 8 or
n > 11.

If ε = 0, slight. better estim., later exact recovery.

13 / 13

Introduction Group-wise SAC Layer-wise SAC Results and conclusion

Recalling GSAC & further developments (see papers)

= 𝑥 𝑥4+ +

𝐶1

𝐶2 𝐶5

𝑥2+

𝐶3

𝑥3+

𝐶4

𝐴1 𝐵1𝐴2+ 𝐵2𝑥𝐴(𝑥) 𝑥3 +=𝐵 𝑥 ((())𝐴3+ 𝑥3 𝑥+𝐵3G-SAC (𝑫 = 𝟑): 0 𝑥2+ +0 𝑥2

0 𝑥5+ + 𝑥6

𝐶7

Reducing interference: For n = 2, 4, 5 can approx higher-order polynomial,
reducing “interference” from even higher-order terms (analogus to SINR)

Total error & evaluation points: Total error = (approx. error) + (numerical
precision). Selecting evaluation points complex equal-magnitude increases
computation but reduces numerical errors (Ramamoorthy & Tang ISIT’21)

Avoid worst-case: Randomly jointly permute the {Ak}Kk=1 and the {Bk}Kk=1 to
avoid worst-case of largest-norm AiBi being recovered last.

groups: Extension in paper to more groups (> 3)
13 / 13

	Introduction
	Group-wise SAC
	Layer-wise SAC
	Results and conclusion

