Successive Approximation for Coded Matrix Multiplication

Shahrzad Kianidehkordi and Stark C. Draper
IEEE International Symposium on Information Theory

June 28, 2022

Outline

(1) Introduction
(2) Group-wise SAC
(3) Layer-wise SAC

4 Results and conclusion

Speed Up Large-Scale Matrix Multiplication

Motivation:

- Matrices are fundamental mathematical structures for representing data and can be too large to fit in memory.
- Matrix multiplication is a core building block for numerous scientific computing and can be too time consuming.
\Rightarrow Large-scale matrix multiplication needs to be parallelized across multiple working nodes and/or approximated.
Problem of stragglers: Some workers compute and/or communicate too slowly, making delay into the parallel system.
Combine coded and approximated computing: While most efforts on coded computing to date have focused on exact recovery of the target computation, in lots of applications (gradient descent, etc.) inexact will suffice.
\Rightarrow We can tradeoff speed and accuracy.

Coded computing using polynomial bases

Notations: N workers and a master multiply $A \in \mathcal{R}^{N_{x} \times N_{z}}$ and $B \in \mathcal{R}^{N_{z} \times N_{y}}$.
Step $\mathbf{1 / 5}$: Master partitions A and B into submatrices.

- Exp) In MatDot, A vert, B horizon, $A B$ to sum of K outer products (e.g., $K=2$).

$$
A_{1} \left\lvert\, A_{2} \times \frac{\sqrt{B_{1}}}{B_{2}}=A_{1} \times B_{1}+A_{2} \times B_{2}\right.
$$

Step 2/5: Master encodes data using poly basis: $\left\{T_{k}(x)\right\}_{k=1}^{K}$.

- Produce encoding polys $A(x)$ and $B(x)$.
- Exp) In MatDot, $T_{k}(x)$ are monomial basis (e.g., $K=2$).

$$
A(x)=A_{1}+A_{2} x, \quad B(x)=B_{1} x+B_{2}
$$

- Evaluate $(A(x), B(x))$ at $x \in\left\{x_{n}\right\}_{n=1}^{N}$; send $\left(A\left(x_{n}\right), B\left(x_{n}\right)\right)$ to worker $n_{\equiv} \in[N]$.

Coded computing using polynomial bases (con't)

Step 3/5: Worker n computes $A\left(x_{n}\right) B\left(x_{n}\right)$; sends it to the master.
Step 4/5: Master decodes $A\left(x_{n}\right) B\left(x_{n}\right)$ to recover $\left\{C_{r}\right\}_{r=1}^{R}$ coeffs.

- Exp) MatDot solves Vander system of equations (e.g., $R=3$)

$$
\begin{gathered}
A(x) B(x)=\left(\left[A_{1}\right)+A_{2} x\right)\left(B_{1} x+B_{2}\right)=\square_{1}^{C_{1}}+\square^{C_{2}} x+\square_{3} x^{2} \\
C_{1}=A_{1} B_{2}, C_{2}=A_{1} B_{1}+A_{2} B_{2}, C_{3}=A_{2} B_{1} \\
{\left[\begin{array}{l}
A\left(x_{i_{1}}\right) B\left(x_{i_{1}}\right) \\
A\left(x_{i_{2}}\right) B\left(x_{i_{2}}\right) \\
A\left(x_{i_{3}}\right) B\left(x_{i_{3}}\right)
\end{array}\right]=\left[\begin{array}{lll}
1 & x_{i_{1}} & x_{i_{i_{2}}}^{2} \\
1 & x_{i_{2}} & x_{i_{2}}^{2} \\
1 & x_{i_{3}} & x_{i_{3}}^{2}
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right]}
\end{gathered}
$$

Step 5/5: In some codes, master needs post-decoding:

- Interpolate $A(x) B(x)$ at $x \in\left\{y_{k}\right\}_{k=1}^{K}$; calculate $A B=\sum_{k=1}^{K} \alpha_{k} A\left(y_{k}\right) B\left(y_{k}\right)$.

Benchmark: ϵ-Approximate MatDot (ϵ AMD) [Jeong et al]
Exp: $K=3$, use same enc polys as MatDot.

$$
\begin{aligned}
& A(x) B(x)=\left(\boxed{A_{1}}+A_{2} x+A_{3} x^{2}\right)\left(B_{1} x^{2}+B_{2} x+B_{3}\right) \\
& C_{3}
\end{aligned}
$$

Idea: Remainder is small if evaluate $A(x), B(x)$ at small $x\left(\left\|A_{i}\right\|_{F},\left\|B_{i}\right\|_{F}\right.$ bounded).

- Approximate recovery poly is $P(x):=C_{1}+C_{2} x+C_{3} x^{2} \approx A(x) B(x)$ if x is small.
- The desired $A B$ product equals $C_{3}=\left(A_{1} B_{1}+A_{2} B_{2}+A_{3} B_{3}\right)$
- $P(x)$ is degree- $2 \Rightarrow$ Approximate recovery threshold is $R_{1}=3$.
- $A(x) B(x)$ is degree- $4 \Rightarrow$ Recovery threshold is $R=5$.

Group-wise SAC, $D=2$

Goal: Extend single-layer approx of ϵ AMD by getting mid coeff to show up elsewhere. Idea \# 1: Carefully re-order the coeffs of enc polys.
$\epsilon \mathrm{AMD}: A(x) B(x)=\left(\boxed{A_{1}}+A_{2} x+A_{3} x^{2}\right)\left(\sqrt{B_{1}} x^{2}+\boxed{B_{2}} x+B_{3}\right)$
G-SAC: $A(x) B(x)=\left(A_{1}+A_{2} x+A_{3} x^{2}\right)\left(B_{3} x^{2}+B_{1} x+B_{2}\right)$

- Approximate recovery polys are $P_{r}(x)=\sum_{i=1}^{r} C_{i} x^{i-1} \approx A(x) B(x)$.
- $A B$ equals $C_{2}=A_{1} B_{1}+A_{2} B_{2}$ plus $C_{5}=A_{3} B_{3}$.
- $P_{r}(x)$ is degree- $r \Rightarrow$ Approximate recovery threshold is $R_{r}=r+1$.
- $A(x) B(x)$ is degree- $4 \Rightarrow$ Recovery threshold is $R=5$.

Group-wise SAC, $D=3$
Goal: Generalize to multi-group SAC in order to recover lower resolutions earlier. Idea \# 2: Inject delays amongst coeffs to eliminate interference.

$$
\begin{aligned}
& \operatorname{G-SAC}(\boldsymbol{D}=2): \quad A(x) B(x)=\left(A_{1}+A_{2} x+A_{3} x^{2}\right)\left(B_{3} x^{2}+B_{1} x+B_{2}\right) \\
& \text { G-SAC }(\boldsymbol{D}=3): \quad A(x) B(x)=\left(A_{1}+A_{2} x+0 x^{2}+A_{3} x^{3}\right)\left(B_{3} x^{3}+0 x^{2}+B_{2} x+B_{1}\right)
\end{aligned}
$$

- $A B$ equals $C_{1}=A_{1} B_{1}$ plus $C_{3}=A_{2} B_{2}$ plus $C_{7}=A_{3} B_{3}$.
- $\forall r \in$ [5], degree of $P_{r}(x)=\sum_{i=1}^{r} C_{i} x^{i-1}$ is $(r-1) \Rightarrow R_{r}=r$.
- $A(x) B(x)$ is degree- $6 \Rightarrow$ Recovery threshold is $R=7$.

Prior coding schemes requiring post-decoding

In both, $A(x)=\sum_{k=1}^{K} A_{k} T_{k-1}(x), B(x)=\sum_{k=1}^{K} B_{k} T_{k-1}(x) ; T_{i}(x)$ is not monomial.

OrthoMatDot [Fahim et al]:

Basis: Orthonormal basis

$$
\int_{-1}^{1} T_{i}(x) T_{j}(x) w(x) d x=\mathbb{I}(i=j)
$$

Enc: Eval $A(x), B(x)$ at $x \in\left\{T_{N}(x)\right.$ roots $\}$
Dec: Invert Cheby Vander to get $A(x) B(x)$
Post-dec: Gauss quad

$$
\begin{aligned}
& A B=\int_{-1}^{1} A(x) B(x) w(x) d x \\
& =\sum_{k=1}^{K} \frac{2}{K} A\left(y_{k}\right) B\left(y_{k}\right)
\end{aligned}
$$

where $y_{k} \in\left\{K\right.$ roots of $\left.T_{K}(x)\right\}$
$(+)$ Mitigates ill-conditioning issue.

Lagrange [Yu et al]:

Basis: Lagrange basis

$$
T_{i}(x)=\prod_{j \neq i} \frac{\left(x-y_{j}\right)}{\left(y_{i}-y_{j}\right)}, \text { for } i \in[K]
$$

Enc: Eval at arbitrary

$$
\begin{aligned}
& x \in \mathcal{X}_{\text {Lag }}, \text { s.t. }\left|\mathcal{X}_{\text {Lag }}\right|=\mathrm{N} \\
& y \in \mathcal{Y}_{\text {Lag }}, \text { s.t. }\left|\mathcal{Y}_{\text {Lag }}\right|=\mathrm{K}
\end{aligned}
$$

Dec: Invert Vander to get $A(x) B(x)$
Post-dec: y_{k} zeros-out cross terms,
$\sum_{k=1}^{K} A\left(y_{k}\right) B\left(y_{k}\right)=A B$
$(+)$ Extends to multi-variate polynomials and security and privacy.

Layer-wise SAC

Goal: Apply SAC to codes with post-decoding, (e.g., OMD, Lag)
Idea: Pick $\left\{x_{n}\right\}_{n=1}^{N}$ used by enc to be ϵ-close (a small perturbation) of $\left\{y_{k}\right\}_{k=1}^{K}$ of dec.

$$
A B=\sum_{k=1}^{3} \alpha_{k} A\left(y_{k}\right) B\left(y_{k}\right) \approx \beta\left(\alpha_{1} \frac{A\left(y_{1, i}\right) B\left(y_{1, i}\right)}{1}+\alpha_{2} \frac{A\left(y_{2, i^{\prime}}\right) B\left(y_{2, i^{\prime}}\right)+A\left(y_{2, i^{\prime \prime}}\right) B\left(y_{2, i^{\prime \prime}}\right)}{2}\right)
$$

General: Div workers into K splits. Avg results from each split to improve estimate.

Layer-wise SAC: Hybridize repetition and coded computing

- Like Rep codes, workers in split $k \in[K]$ contribute to $A\left(y_{k}\right) B\left(y_{k}\right)$ recovery.
- Like coded computing, guarantee exact rec only when a few workers report in.
- $\operatorname{LSAC}(\epsilon=0)$ slightly better estimates, but waits longer for exact recovery.

- However, compared to OMD we loose numerical benefits of Cheby Vander dec.

Relative error vs. approximation threshold

Settings:

- $N=40, K=8, A \in \mathbb{R}^{100 \times 8000}, B \in \mathbb{R}^{8000 \times 100}$, All entries $\sim \mathcal{N}(0,1)$.
- MMD: $(30,6)$ MatDot \& $(10,2)$ MatDot.
- 2-GSAC: $K_{1} \in\{6,8\}, x \in\left\{0.15 e^{\frac{i 2 \pi n}{N}}\right\}_{n=1}^{N}$.
- LSAC-OMD: $\epsilon \in\left\{\frac{5}{10^{4}}, 0\right\}, y_{k, i} \in \mu_{k}^{(8), \text { cheby }} \pm \epsilon$.

Takeaways:

- G-SAC, $K_{1}=8$: similar to ϵ AMD upto $n=8$, improve as $n \uparrow$.
- G-SAC, $K_{1}=6$: early estim. $n=6$, better estim. $n \geq 14$.
- L-SAC via OMD: contin. improv. since $n=1$.
- If $\epsilon=0$, slight. better estim., later exact recovery.

Conclusion and future works

Conclusion:

- G-SAC and L-SAC enable approximation in coded computing, extending approximate procedure of ϵ AMD to multiple layers.
- Compared to ϵ AMD, SAC achieves better tradeoff between approximate threshold and relative error.

Some possible future works:

- Apply SAC to more practical applications (beyond matrix multiplication) such as training deep neural networks.
- Extend SAC to other coding schemes, such as Polynomial and Product codes.
- Study numerically stability of SAC methods and explore possible numerical stable coding schemes building on SAC.

References

Full version: S. Kiani and S. C. Draper, "Successive Approximation for Coded Matrix Multiplication," arXiv:2201.03486.
N. Ferdinand and S. C. Draper, "Anytime coding for distributed computation," in IEEE Annual Allerton Conf. on Commun., Control, and Comput., 2016.
S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, "On the optimal recovery threshold of coded matrix multiplication," IEEE Trans. on Inf. Theory, 2019.
H. Jeong, A. Devulapalli, V. R. Cadambe, and F. P. Calmon, " ϵ approximate coded matrix multiplication is nearly twice as efficient as exact multiplication," IEEE J. Sel. Areas Inf. Theory, 2021.
M. Fahim and V. R. Cadambe, "Numerically stable polynomially coded computing," IEEE Trans. on Inf. Theory, 2021.

目
Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr, "Lagrange coded computing: Optimal design for resiliency, security, and privacy," in Int. Conf. on Artificial Intelligence and Statistics (AISTATS), 2019.

Effect of correlation (Additional)

Settings:

- $n=8$.
- LSAC-Lag: $\epsilon=3.33 \times 10^{-2}$, $y_{k, i} \in$-close to k.
- $A_{k}=\lambda A^{(0)}+A_{k}^{(1)}$,
$B_{k}=\lambda B^{(0)}+B_{k}^{(1)}$,
$A^{(0)}, \ldots, B_{k}^{(1)} \sim \mathcal{N}(0,1)$.

Takeaways:

- 2-GSAC and LSAC-Lag better estim. than ϵ AMD if highly correlated (λ large) and parameters set optimally.

Relative Err. vs. Approx. Threshold (Additional)

Settings:

- $N=24, K=8, A, B \sim \mathcal{N}(0,1)$,
$A, B:\left(6 \times 10^{2}, 9 \times 10^{3}, 6 \times 10^{2}\right)$.
- LSAC-OMD: $\epsilon \in\left\{3 \times 10^{-4}, 0\right\}, y_{k, i} \epsilon$-close to $\mu_{k}^{(8), \text { cheby }}$.
- LSAC-Lag: $\epsilon=10^{-2}, \epsilon$-close to k.
- ϵ AMD: $x \in\left\{0.15 e^{\frac{i 22 \pi n}{N}}\right\}_{n=1}^{N}$.

Takeaways:

- LSAC-Lag $\epsilon>0$: contin improv from $n=1$. Better than ϵ AMD $n<8$.
- LSAC-OMD $\epsilon>0$: contin improv from $n=1$. Better than ϵ AMD $n<8$ or $n>11$.
- If $\epsilon=0$, slight. better estim., later exact recovery.

Recalling GSAC \& further developments (see papers)

$\boldsymbol{G - S A C}(\boldsymbol{D}=3): \quad A(x) B(x)=\left(A_{1}+A_{2} x+0 x^{2}+A_{3} x^{3}\right)\left(B_{3} x^{3}+0 x^{2}+B_{2} x+B_{1}\right)$

- Reducing interference: For $n=2,4,5$ can approx higher-order polynomial, reducing "interference" from even higher-order terms (analogus to SINR)
- Total error \& evaluation points: Total error $=$ (approx. error) + (numerical precision). Selecting evaluation points complex equal-magnitude increases computation but reduces numerical errors (Ramamoorthy \& Tang ISIT'21)
- Avoid worst-case: Randomly jointly permute the $\left\{A_{k}\right\}_{k=1}^{K}$ and the $\left\{B_{k}\right\}_{k=1}^{K}$ to avoid worst-case of largest-norm $A_{i} B_{i}$ being recovered last.
- \# groups: Extension in paper to more groups (>3)

