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Speed Up Large-Scale Matrix Multiplication
Motivation:
@ Matrices are fundamental mathematical structures for representing
data and can be too large to fit in memory.
@ Matrix multiplication is a core building block for numerous scientific
computing and can be too time consuming.
= Large-scale matrix multiplication is parallelized and/or approximated.
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Randomized Approximated Matrix Multiplication

Problem statement: Given an m x n matrix A and an n X p matrix B
approximate the product AB.
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Randomized Approximated Matrix Multiplication

Problem statement: Given an m X n matrix A and an n X p matrix B
approximate the product AB.
Classic randomized algorithms:

@ P. Drineas, R. Kannan, and M. W. Mahoney, “Fast Monte Carlo

algorithms for matrices |: Approximating matrix multiplication,”
SIAM Journal on Computing, 36(1), pp.132-157, 2006.

@ P. Drineas, R. Kannan, “Fast Monte-Carlo algorithms for approximate
matrix multiplication,” Proceedings IEEE Symposium on Foundations
of Computer Science (pp. 452-459). 2001.

o E. Cohen, D. Lewis, "Approximating matrix multiplication for pattern
recognition tasks,” Journal of Algorithms, 30(2), pp.211-252, 1999.
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The general idea ...

@ Randomly sample columns/rows/entries of the matrices with carefully
constructed sampling probabilities to form an approximated result.
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Column/Row Uniform Sampling?

Problem Statement: Approximate the sum of n rank-one matrices,
(Notation: Aj, is the i-th row of A and A,j is the j-th column)

AB = ZA*kBk*, where A, By, € R™*P
k=1

A sampling approach:
@ Choose uniformly at random ¢ = O(1) integers from {1,..., n}.

@ In one pass, form the matrix C consisting of the chosen columns in A
and form the matrix R consisting of the corresponding rows in B.

@ Is CR product a good approximation for AB product?
Often NO. But if for all k =1,...,n, |Ak||Bk«| is close to its mean

value (£ 37, [Auk||Bks|), then YES.
(Notation: |x|2 =", x? is Euclidean norm of a vector)

'Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”
FOCS’ 2001.
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Column/Row NU Sampling 23

Problem Statement: Approximate the sum of n rank-one matrices,

AB = ZA*kBk*, where A, By, € R™*P
k=1

A sampling approach:
@ Fix a set of probabilities p;,i =1,...,n, summing up to 1
e Fort =1,...,c set j; = i with probability P(j: = i) = p; (pick ¢
terms of the sum, with replacement, with respect to the p;)
@ Approximate the product AB by summing the ¢ terms, after scaling

(o}

! 1
AB =D AuBim) A
k=1 t=1 Ut

2Mahoney et al., “Fast Monte Carlo algorithms for matrices |: Approximating matrix

multiplication,” SIAM J. Comput’' 2006
3Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”

FOCS’ 2001.
5/1



Column/Row NU Sampling (Matrix Notation) *°

The same algorithm in matrix notation:

@ Pick ¢ columns of A to form an m x ¢ matrix C and the
corresponding ¢ rows of B to form an ¢ x p matrix R.

@ Rescale the columns/rows prior to including them in C/R

@ Approximate AB multiplication by CR multiplication.
(Ae R™*" B e R™P, C € R™€° R e RP)

In other words, use a sampling matrix S. S is a n X ¢ matrix, the t-th

column (t =1,...,c) has one non-zero:
1
Sjt =
V/ CPj:

Clearly AB ~ CR = (AS)(STB). (Random Sketch)

*Mahoney et al., “Fast Monte Carlo algorithms for matrices |: Approximating matrix
multiplication,” SIAM J. Comput’' 2006

®Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”
FOCS’ 2001.
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Column/Row NU Sampling (Some Lemmas) ©7

Some lemmas:
@ For any sampling probabilities:

n

(CRY) = Y3 2B ALl — (ag),

t=1 k=1
RS A%kBk' 1
Var((CR)ij) = = > ——2 — =(AB)3,
ar(( )',J) c et Pk C( )I,_]

o From these, it's easy to bound E(||AB — CR||g).
(Notation: The Frobenius norm for a matrix A is ||A||F Zw i)

e For probabilities p; o< |A,i||Bix|, E(||AB — CR||g) is minimized and

IAB — CR|l = O(llAll£ IBll¢ /v/<)

5Mahoney et al., “Fast Monte Carlo algorithms for matrices |: Approximating matrix
multiplication,” SIAM J. Comput’' 2006

"Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”
FOCS' 2001.
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Column/Row Sampling Without Replacement®

Problem Statement: Approximate the sum of n rank-one matrices,
n
AB = ZA*kBk*, where A, By, € R™¥P
k=1

Lemma: If p, = % then with probability 1 — o

_ 2 _ 1n_ 2 2
1AB CR||F_(9<U (C 1);’A*k| | Bl

Advantage: For n=c, the above error becomes zero, while in Sampling
with Replacement this was not the case.

. . . . _ 1
Disadvantage: For uniform sampling (px = <), the error can blow up.
For non-uniform sampling, error analysis is hard.

8Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”

FOCS’ 2001.
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Element-Wise NU Sampling °%°

Problem statement: Approximate each element of AB matrix, i.e.,
(AB);j for all i € [m] and j € [p]

®Mahoney et al., “Fast Monte Carlo algorithms for matrices |: Approximating matrix
multiplication,” SIAM J. Comput’' 2006
¥Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”

FOCS’ 2001.
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Element-Wise NU Sampling °%°
Problem statement: Approximate each element of AB matrix, i.e.,
(AB);j for all i € [m] and j € [p]
A sampling approach:
e Fix two sets of probabilities p; j and gjx, i =1,...,m, j
k=1,...,psuchthat 0 < p;; <land 0 < g, <1
@ Each element (/,/) of A and B are randomly and independently either
zeroed out or kept and rescaled, constructing matrices C and R.

B i Bi; i -

C.— o, with prob. pi; R o> with prob. g,

' . s My .
0, otherwise

=1,...,n,

0, otherwise
@ Approximate AB with CR multiplication
In other words, use random matrices E and D

C=A+E,R=B+ D — C and R are sparse. (Random Sparsification)

®Mahoney et al., “Fast Monte Carlo algorithms for matrices |: Approximating matrix
multiplication,” SIAM J. Comput’' 2006

¥Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”
FOCS’ 2001.
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Element-Wise NU Sampling (Some Lemmas) 112

Some lemmas:
@ For any sampling probabilities:

E((CR):}) ZE i K)E(Rej) = (AB);;

ZA kBk,J

k=1

@ From these, it's easy to bound E(||AB — CRJ|,). (Notation: The
spectral norm is ||A[l, = sup,egn x20 |AX|/|x].)
o We have ||AB — CR||, = O(||Al|g I|Bl|¢ /+/c) for probabilities

pii o AI2’J, if ’A,’J’> T . 81217 if’B,‘J’> T
. 1 .
" |Aij|, otherwise J |Bij|, otherwise

n 2

A2
Var((CR); ;) = Z

Pi.k qk,J

Y Mahoney et al., “Fast Monte Carlo algorithms for matrices |: Approximating matrix
y g PP g
multiplication,” SIAM J. Comput’' 2006

2Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”

FOCS' 2001.
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Sequential Matrix Multiplication '3

Problem statement: Approximate products of a sequence of
non-negative matrices, e.g., ABC, A€ R™*" B € R"™P and C € RP*9,
Idea: Do Random walks in a graph representation of the input matrices
and identify all high-valued entries in non-negative matrix products.

BBCohen et al., “"Approximating matrix multiplication for pattern recognition tasks,” J.
Alg’ 1999.
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