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Speed Up Large-Scale Matrix Multiplication
Motivation:

Matrices are fundamental mathematical structures for representing
data and can be too large to fit in memory.
Matrix multiplication is a core building block for numerous scientific
computing and can be too time consuming.

⇒ Large-scale matrix multiplication is parallelized and/or approximated.
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Randomized Approximated Matrix Multiplication

Problem statement: Given an m × n matrix A and an n × p matrix B
approximate the product AB.

Classic randomized algorithms:

P. Drineas, R. Kannan, and M. W. Mahoney, “Fast Monte Carlo
algorithms for matrices I: Approximating matrix multiplication,”
SIAM Journal on Computing, 36(1), pp.132-157, 2006.

P. Drineas, R. Kannan, “Fast Monte-Carlo algorithms for approximate
matrix multiplication,” Proceedings IEEE Symposium on Foundations
of Computer Science (pp. 452-459). 2001.

E. Cohen, D. Lewis, “Approximating matrix multiplication for pattern
recognition tasks,” Journal of Algorithms, 30(2), pp.211-252, 1999.

The general idea ...

Randomly sample columns/rows/entries of the matrices with carefully
constructed sampling probabilities to form an approximated result.
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Column/Row Uniform Sampling1

Problem Statement: Approximate the sum of n rank-one matrices,
(Notation: Ai∗ is the i-th row of A and A∗j is the j-th column)

AB =
n∑

k=1

A∗kBk∗, where A∗kBk∗ ∈ Rm×p

A sampling approach:

Choose uniformly at random c = O(1) integers from {1, . . . , n}.
In one pass, form the matrix C consisting of the chosen columns in A
and form the matrix R consisting of the corresponding rows in B.

Is CR product a good approximation for AB product?
Often NO. But if for all k = 1, . . . , n, |A∗k ||Bk∗| is close to its mean
value ( 1n

∑
k |A∗k ||Bk∗|), then YES.

(Notation: |x |2 =
∑

i x
2
i is Euclidean norm of a vector)

1Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”
FOCS’ 2001.
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Column/Row NU Sampling 23

Problem Statement: Approximate the sum of n rank-one matrices,

AB =
n∑

k=1

A∗kBk∗, where A∗kBk∗ ∈ Rm×p

A sampling approach:

Fix a set of probabilities pi , i = 1, . . . , n, summing up to 1

For t = 1, . . . , c set jt = i with probability P(jt = i) = pi (pick c
terms of the sum, with replacement, with respect to the pi )

Approximate the product AB by summing the c terms, after scaling

AB =
n∑

k=1

A∗kBk∗ ≈
c∑

t=1

1

cpjt
A∗jtBjt∗

2Mahoney et al., “Fast Monte Carlo algorithms for matrices I: Approximating matrix
multiplication,” SIAM J. Comput’ 2006

3Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”
FOCS’ 2001.
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Column/Row NU Sampling (Matrix Notation) 45

The same algorithm in matrix notation:

Pick c columns of A to form an m × c matrix C and the
corresponding c rows of B to form an c × p matrix R.

Rescale the columns/rows prior to including them in C/R

Approximate AB multiplication by CR multiplication.
(A ∈ Rm×n,B ∈ Rn×p,C ∈ Rm×c ,R ∈ Rc×p)

In other words, use a sampling matrix S . S is a n × c matrix, the t-th
column (t = 1, . . . , c) has one non-zero:

Sj ,t =
1
√
cpjt

Clearly AB ≈ CR = (AS)(STB). (Random Sketch)
4Mahoney et al., “Fast Monte Carlo algorithms for matrices I: Approximating matrix

multiplication,” SIAM J. Comput’ 2006
5Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”

FOCS’ 2001.
6 / 1



Column/Row NU Sampling (Some Lemmas) 67

Some lemmas:

For any sampling probabilities:

E((CR)i ,j) =
c∑

t=1

n∑
k=1

pk
Ai ,kBk,j

cpk
= (AB)i ,j

Var((CR)i ,j) =
1

c

n∑
k=1

A2
i ,kB

2
k,j

pk
− 1

c
(AB)2i ,j

From these, it’s easy to bound E(‖AB − CR‖F ).
(Notation: The Frobenius norm for a matrix A is ‖A‖2F =

∑
i ,j A

2
i ,j .)

For probabilities pi ∝ |A∗i ||Bi∗|, E(‖AB − CR‖F ) is minimized and

‖AB − CR‖F = O(‖A‖F ‖B‖F /
√
c)

6Mahoney et al., “Fast Monte Carlo algorithms for matrices I: Approximating matrix
multiplication,” SIAM J. Comput’ 2006

7Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”
FOCS’ 2001.
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Column/Row Sampling Without Replacement8

Problem Statement: Approximate the sum of n rank-one matrices,

AB =
n∑

k=1

A∗kBk∗, where A∗kBk∗ ∈ Rm×p

Lemma: If pk = 1
n , then with probability 1− σ

‖AB − CR‖2F = O

(
1

σ

(n
c
− 1
)∑

k

|A∗k |2|Bk∗|2
)

Advantage: For n=c, the above error becomes zero, while in Sampling
with Replacement this was not the case.
Disadvantage: For uniform sampling (pk = 1

n ), the error can blow up.
For non-uniform sampling, error analysis is hard.

8Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”
FOCS’ 2001.
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Element-Wise NU Sampling 910

Problem statement: Approximate each element of AB matrix, i.e.,
(AB)i ,j for all i ∈ [m] and j ∈ [p]

A sampling approach:

Fix two sets of probabilities pi ,j and qj ,k , i = 1, . . . ,m, j = 1, . . . , n,
k = 1, . . . , p such that 0 ≤ pi ,j ≤ 1 and 0 ≤ qj ,k ≤ 1.

Each element (i , j) of A and B are randomly and independently either
zeroed out or kept and rescaled, constructing matrices C and R.

Ci ,j =

{
Ai,j

pi,j
, with prob. pi ,j

0, otherwise
,Ri ,j =

{
Bi,j

qi,j
, with prob. qi ,j

0, otherwise
.

Approximate AB with CR multiplication

In other words, use random matrices E and D

C = A + E ,R = B + D → C and R are sparse. (Random Sparsification)

9Mahoney et al., “Fast Monte Carlo algorithms for matrices I: Approximating matrix
multiplication,” SIAM J. Comput’ 2006

10Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”
FOCS’ 2001.
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Element-Wise NU Sampling (Some Lemmas) 1112

Some lemmas:

For any sampling probabilities:

E((CR)i ,j) =
n∑

k=1

E(Ci ,k)E(Rk,j) = (AB)i ,j

Var((CR)i ,j) =
n∑

k=1

A2
i ,k

pi ,k

B2
k,j

qk,j
−

n∑
k=1

A2
i ,kB

2
k,j

From these, it’s easy to bound E(‖AB − CR‖2). (Notation: The
spectral norm is ‖A‖2 = supx∈Rn,x 6=0 |Ax |/|x |.)
We have ‖AB − CR‖2 = O(‖A‖F ‖B‖F /

√
c) for probabilities

pi ,j ∝

{
A2
i ,j , if |Ai ,j | > T

|Ai ,j |, otherwise
, qi ,j ∝

{
B2
i ,j , if |Bi ,j | > T

|Bi ,j |, otherwise

11Mahoney et al., “Fast Monte Carlo algorithms for matrices I: Approximating matrix
multiplication,” SIAM J. Comput’ 2006

12Drineas et al., “Fast Monte-Carlo algorithms for approximate matrix multiplication,”
FOCS’ 2001.
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Sequential Matrix Multiplication 13

Problem statement: Approximate products of a sequence of
non-negative matrices, e.g., ABC , A ∈ Rm×n,B ∈ Rn×p, and C ∈ Rp×q.
Idea: Do Random walks in a graph representation of the input matrices
and identify all high-valued entries in non-negative matrix products.

13Cohen et al., “Approximating matrix multiplication for pattern recognition tasks,” J.
Alg’ 1999.
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