Random-sampling based techniques for approximating matrix multiplication

Shahrzad Kianidehkordi

Feb 2021, IT@UofT

Speed Up Large-Scale Matrix Multiplication **Motivation**:

- Matrices are fundamental mathematical structures for representing data and can be too large to fit in memory.
- Matrix multiplication is a core building block for numerous scientific computing and can be too time consuming.
- \Rightarrow Large-scale matrix multiplication is parallelized and/or approximated.

Speed Up Large-Scale Matrix Multiplication **Motivation**:

- Matrices are fundamental mathematical structures for representing data and can be too large to fit in memory.
- Matrix multiplication is a core building block for numerous scientific computing and can be too time consuming.
- \Rightarrow Large-scale matrix multiplication is parallelized and/or approximated.

Randomized Approximated Matrix Multiplication

Problem statement: Given an $m \times n$ matrix A and an $n \times p$ matrix B approximate the product AB.

Randomized Approximated Matrix Multiplication

Problem statement: Given an $m \times n$ matrix A and an $n \times p$ matrix B approximate the product AB.

Classic randomized algorithms:

- P. Drineas, R. Kannan, and M. W. Mahoney, "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM Journal on Computing, 36(1), pp.132-157, 2006.
- P. Drineas, R. Kannan, "Fast Monte-Carlo algorithms for approximate matrix multiplication," Proceedings IEEE Symposium on Foundations of Computer Science (pp. 452-459). 2001.
- E. Cohen, D. Lewis, "Approximating matrix multiplication for pattern recognition tasks," Journal of Algorithms, 30(2), pp.211-252, 1999.

Randomized Approximated Matrix Multiplication

Problem statement: Given an $m \times n$ matrix A and an $n \times p$ matrix B approximate the product AB.

Classic randomized algorithms:

- P. Drineas, R. Kannan, and M. W. Mahoney, "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM Journal on Computing, 36(1), pp.132-157, 2006.
- P. Drineas, R. Kannan, "Fast Monte-Carlo algorithms for approximate matrix multiplication," Proceedings IEEE Symposium on Foundations of Computer Science (pp. 452-459). 2001.
- E. Cohen, D. Lewis, "Approximating matrix multiplication for pattern recognition tasks," Journal of Algorithms, 30(2), pp.211-252, 1999.

The general idea ...

• Randomly sample columns/rows/entries of the matrices with carefully constructed sampling probabilities to form an approximated result.

Column/Row Uniform Sampling¹

Problem Statement: Approximate the sum of *n* rank-one matrices, (Notation: A_{i*} is the *i*-th row of *A* and A_{*i} is the *j*-th column)

$$AB = \sum_{k=1}^{n} A_{*k} B_{k*}, \text{ where } A_{*k} B_{k*} \in \mathbb{R}^{m \times p}$$

A sampling approach:

- Choose uniformly at random c = O(1) integers from $\{1, \ldots, n\}$.
- In one pass, form the matrix C consisting of the chosen columns in A and form the matrix R consisting of the corresponding rows in B.

 Is CR product a good approximation for AB product? Often NO. But if for all k = 1,..., n, |A_{*k}||B_{k*}| is close to its mean value (¹/_n ∑_k |A_{*k}||B_{k*}|), then YES. (Notation: |x|² = ∑_i x_i² is Euclidean norm of a vector)

¹Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

Column/Row NU Sampling ²³

Problem Statement: Approximate the sum of *n* rank-one matrices,

$$AB = \sum_{k=1}^{n} A_{*k} B_{k*}, \text{ where } A_{*k} B_{k*} \in \mathbb{R}^{m \times p}$$

 $^{^2\}mathsf{M}ahoney$ et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006

³Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

Column/Row NU Sampling ²³

Problem Statement: Approximate the sum of *n* rank-one matrices,

$$AB = \sum_{k=1}^{n} A_{*k} B_{k*}, ext{ where } A_{*k} B_{k*} \in \mathbb{R}^{m imes p}$$

A sampling approach:

- Fix a set of probabilities $p_i, i = 1, ..., n$, summing up to 1
- For t = 1, ..., c set $j_t = i$ with probability $P(j_t = i) = p_i$ (pick c terms of the sum, with replacement, with respect to the p_i)
- Approximate the product AB by summing the c terms, after scaling

$$AB = \sum_{k=1}^{n} A_{*k} B_{k*} \approx \sum_{t=1}^{c} \frac{1}{c p_{j_t}} A_{*j_t} B_{j_t*}$$

 $^{^2\}mathsf{Mahoney}$ et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006

³Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

Column/Row NU Sampling (Matrix Notation) ⁴⁵

The same algorithm in matrix notation:

- Pick c columns of A to form an $m \times c$ matrix C and the corresponding c rows of B to form an $c \times p$ matrix R.
- Rescale the columns/rows prior to including them in C/R
- Approximate AB multiplication by CR multiplication. $(A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{m \times c}, R \in \mathbb{R}^{c \times p})$

In other words, use a sampling matrix S. S is a $n \times c$ matrix, the t-th column (t = 1, ..., c) has one non-zero:

$$S_{j,t} = rac{1}{\sqrt{cp_{j_t}}}$$

Clearly $AB \approx CR = (AS)(S^TB)$. (Random Sketch)

⁴Mahoney et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006

⁵Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

Column/Row NU Sampling (Some Lemmas) ⁶⁷ Some lemmas:

For any sampling probabilities:

$$\mathbb{E}((CR)_{i,j}) = \sum_{t=1}^{c} \sum_{k=1}^{n} p_k \frac{A_{i,k}B_{k,j}}{cp_k} = (AB)_{i,j}$$
$$Var((CR)_{i,j}) = \frac{1}{c} \sum_{k=1}^{n} \frac{A_{i,k}^2B_{k,j}^2}{p_k} - \frac{1}{c}(AB)_{i,j}^2$$

- From these, it's easy to bound $\mathbb{E}(||AB CR||_F)$. (Notation: The Frobenius norm for a matrix A is $||A||_F^2 = \sum_{i,j} A_{i,j}^2$.)
- For probabilities $p_i \propto |A_{*i}| |B_{i*}|$, $\mathbb{E}(||AB CR||_F)$ is minimized and

$$\|AB - CR\|_F = \mathcal{O}(\|A\|_F \|B\|_F / \sqrt{c})$$

 $^{^6\}mathsf{Mahoney}$ et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006

⁷Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

Column/Row Sampling Without Replacement⁸

Problem Statement: Approximate the sum of *n* rank-one matrices,

$$AB = \sum_{k=1}^{n} A_{*k} B_{k*}, \text{ where } A_{*k} B_{k*} \in \mathbb{R}^{m \times p}$$

Lemma: If $p_k = \frac{1}{n}$, then with probability $1 - \sigma$

$$\|AB - CR\|_F^2 = \mathcal{O}\left(\frac{1}{\sigma}\left(\frac{n}{c} - 1\right)\sum_k |A_{*k}|^2 |B_{k*}|^2\right)$$

Advantage: For n=c, the above error becomes zero, while in Sampling with Replacement this was not the case. **Disadvantage:** For uniform sampling $(p_k = \frac{1}{n})$, the error can blow up. For non-uniform sampling, error analysis is hard.

⁸Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

Element-Wise NU Sampling ⁹¹⁰

Problem statement: Approximate each element of *AB* matrix, i.e., $(AB)_{i,j}$ for all $i \in [m]$ and $j \in [p]$

 $^{^9 \}rm Mahoney$ et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006

¹⁰Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

Element-Wise NU Sampling 910

Problem statement: Approximate each element of *AB* matrix, i.e., $(AB)_{i,j}$ for all $i \in [m]$ and $j \in [p]$

A sampling approach:

- Fix two sets of probabilities $p_{i,j}$ and $q_{j,k}$, i = 1, ..., m, j = 1, ..., n, k = 1, ..., p such that $0 \le p_{i,j} \le 1$ and $0 \le q_{j,k} \le 1$.
- Each element (i, j) of A and B are randomly and independently either zeroed out or kept and rescaled, constructing matrices C and R.

$$C_{i,j} = \begin{cases} \frac{A_{i,j}}{p_{i,j}}, & \text{with prob. } p_{i,j} \\ 0, & \text{otherwise} \end{cases}, R_{i,j} = \begin{cases} \frac{B_{i,j}}{q_{i,j}}, & \text{with prob. } q_{i,j} \\ 0, & \text{otherwise} \end{cases}$$

• Approximate AB with CR multiplication In other words, use random matrices E and D

 $C = A + E, R = B + D \rightarrow C$ and R are sparse. (Random Sparsification)

 $^{^9\}mathsf{Mahoney}$ et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006

¹⁰Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

Element-Wise NU Sampling (Some Lemmas) ¹¹¹² Some lemmas:

• For any sampling probabilities:

$$\mathbb{E}((CR)_{i,j}) = \sum_{k=1}^{n} \mathbb{E}(C_{i,k}) \mathbb{E}(R_{k,j}) = (AB)_{i,j}$$
$$Var((CR)_{i,j}) = \sum_{k=1}^{n} \frac{A_{i,k}^{2}}{p_{i,k}} \frac{B_{k,j}^{2}}{q_{k,j}} - \sum_{k=1}^{n} A_{i,k}^{2} B_{k,j}^{2}$$

- From these, it's easy to bound E(||AB CR||₂). (Notation: The spectral norm is ||A||₂ = sup_{x∈ℝⁿ,x≠0} |Ax|/|x|.)
- We have $\|AB CR\|_2 = \mathcal{O}(\|A\|_F \|B\|_F / \sqrt{c})$ for probabilities

$$p_{i,j} \propto \begin{cases} A_{i,j}^2, & \text{if } |A_{i,j}| > T \\ |A_{i,j}|, & \text{otherwise} \end{cases}, q_{i,j} \propto \begin{cases} B_{i,j}^2, & \text{if } |B_{i,j}| > T \\ |B_{i,j}|, & \text{otherwise} \end{cases}$$

 $^{11}\mbox{Mahoney}$ et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006

¹²Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

Problem statement: Approximate products of a sequence of non-negative matrices, e.g., ABC, $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, and $C \in \mathbb{R}^{p \times q}$. **Idea:** Do Random walks in a graph representation of the input matrices and identify all high-valued entries in non-negative matrix products.

¹³Cohen et al., "Approximating matrix multiplication for pattern recognition tasks," J. Alg' 1999.

Problem statement: Approximate products of a sequence of non-negative matrices, e.g., ABC, $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, and $C \in \mathbb{R}^{p \times q}$. **Idea:** Do Random walks in a graph representation of the input matrices and identify all high-valued entries in non-negative matrix products.

¹³Cohen et al., "Approximating matrix multiplication for pattern recognition tasks," J. Alg' 1999.