Random-sampling based techniques
 for approximating matrix multiplication

Shahrzad Kianidehkordi

Feb 2021, IT@UofT

Speed Up Large-Scale Matrix Multiplication

Motivation:

- Matrices are fundamental mathematical structures for representing data and can be too large to fit in memory.
- Matrix multiplication is a core building block for numerous scientific computing and can be too time consuming.
\Rightarrow Large-scale matrix multiplication is parallelized and/or approximated.

Speed Up Large-Scale Matrix Multiplication

Motivation:

- Matrices are fundamental mathematical structures for representing data and can be too large to fit in memory.
- Matrix multiplication is a core building block for numerous scientific computing and can be too time consuming.
\Rightarrow Large-scale matrix multiplication is parallelized and/or approximated.

Randomized Approximated Matrix Multiplication

Problem statement: Given an $m \times n$ matrix A and an $n \times p$ matrix B approximate the product $A B$.

Randomized Approximated Matrix Multiplication

Problem statement: Given an $m \times n$ matrix A and an $n \times p$ matrix B approximate the product $A B$.
Classic randomized algorithms:

- P. Drineas, R. Kannan, and M. W. Mahoney, "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM Journal on Computing, 36(1), pp.132-157, 2006.
- P. Drineas, R. Kannan, "Fast Monte-Carlo algorithms for approximate matrix multiplication," Proceedings IEEE Symposium on Foundations of Computer Science (pp. 452-459). 2001.
- E. Cohen, D. Lewis, "Approximating matrix multiplication for pattern recognition tasks," Journal of Algorithms, 30(2), pp.211-252, 1999.

Randomized Approximated Matrix Multiplication

Problem statement: Given an $m \times n$ matrix A and an $n \times p$ matrix B approximate the product $A B$.

Classic randomized algorithms:

- P. Drineas, R. Kannan, and M. W. Mahoney, "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM Journal on Computing, 36(1), pp.132-157, 2006.
- P. Drineas, R. Kannan, "Fast Monte-Carlo algorithms for approximate matrix multiplication," Proceedings IEEE Symposium on Foundations of Computer Science (pp. 452-459). 2001.
- E. Cohen, D. Lewis, "Approximating matrix multiplication for pattern recognition tasks," Journal of Algorithms, 30(2), pp.211-252, 1999.

The general idea ...

- Randomly sample columns/rows/entries of the matrices with carefully constructed sampling probabilities to form an approximated result.

Column/Row Uniform Sampling ${ }^{1}$

Problem Statement: Approximate the sum of n rank-one matrices, (Notation: $A_{i *}$ is the i-th row of A and $A_{* j}$ is the j-th column)

$$
A B=\sum_{k=1}^{n} A_{* k} B_{k *}, \text { where } A_{* k} B_{k *} \in \mathbb{R}^{m \times p}
$$

A sampling approach:

- Choose uniformly at random $c=\mathcal{O}(1)$ integers from $\{1, \ldots, n\}$.
- In one pass, form the matrix C consisting of the chosen columns in A and form the matrix R consisting of the corresponding rows in B.
- Is $C R$ product a good approximation for $A B$ product?

Often NO. But if for all $k=1, \ldots, n,\left|A_{* k}\right|\left|B_{k *}\right|$ is close to its mean value $\left(\frac{1}{n} \sum_{k}\left|A_{* k}\right|\left|B_{k *}\right|\right)$, then YES.
(Notation: $|x|^{2}=\sum_{i} x_{i}^{2}$ is Euclidean norm of a vector)

[^0]
Column/Row NU Sampling ${ }^{23}$

Problem Statement: Approximate the sum of n rank-one matrices,

$$
A B=\sum_{k=1}^{n} A_{* k} B_{k *}, \text { where } A_{* k} B_{k *} \in \mathbb{R}^{m \times p}
$$

${ }^{2}$ Mahoney et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006
${ }^{3}$ Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

Column/Row NU Sampling ${ }^{23}$

Problem Statement: Approximate the sum of n rank-one matrices,

$$
A B=\sum_{k=1}^{n} A_{* k} B_{k *}, \text { where } A_{* k} B_{k *} \in \mathbb{R}^{m \times p}
$$

A sampling approach:

- Fix a set of probabilities $p_{i}, i=1, \ldots, n$, summing up to 1
- For $t=1, \ldots, c$ set $j_{t}=i$ with probability $P\left(j_{t}=i\right)=p_{i}$ (pick c terms of the sum, with replacement, with respect to the p_{i})
- Approximate the product $A B$ by summing the c terms, after scaling

$$
A B=\sum_{k=1}^{n} A_{* k} B_{k *} \approx \sum_{t=1}^{c} \frac{1}{c p_{j_{t}}} A_{* j_{t}} B_{j_{t} *}
$$

${ }^{2}$ Mahoney et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006
${ }^{3}$ Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

Column/Row NU Sampling (Matrix Notation) ${ }^{45}$

The same algorithm in matrix notation:

- Pick columns of A to form an $m \times c$ matrix C and the corresponding c rows of B to form an $c \times p$ matrix R.
- Rescale the columns/rows prior to including them in C / R
- Approximate $A B$ multiplication by $C R$ multiplication. $\left(A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{m \times c}, R \in \mathbb{R}^{c \times p}\right)$
In other words, use a sampling matrix $S . S$ is a $n \times c$ matrix, the t-th column $(t=1, \ldots, c)$ has one non-zero:

$$
S_{j, t}=\frac{1}{\sqrt{c p_{j t}}}
$$

Clearly $A B \approx C R=(A S)\left(S^{T} B\right)$. (Random Sketch)

[^1]
Column/Row NU Sampling (Some Lemmas) ${ }^{67}$

Some lemmas:

- For any sampling probabilities:

$$
\begin{aligned}
& \mathbb{E}\left((C R)_{i, j}\right)=\sum_{t=1}^{c} \sum_{k=1}^{n} p_{k} \frac{A_{i, k} B_{k, j}}{c p_{k}}=(A B)_{i, j} \\
& \operatorname{Var}\left((C R)_{i, j}\right)=\frac{1}{c} \sum_{k=1}^{n} \frac{A_{i, k}^{2} B_{k, j}^{2}}{p_{k}}-\frac{1}{c}(A B)_{i, j}^{2}
\end{aligned}
$$

- From these, it's easy to bound $\mathbb{E}\left(\|A B-C R\|_{F}\right)$.
(Notation: The Frobenius norm for a matrix A is $\|A\|_{F}^{2}=\sum_{i, j} A_{i, j}^{2}$.)
- For probabilities $p_{i} \propto\left|A_{* i}\right|\left|B_{i *}\right|, \mathbb{E}\left(\|A B-C R\|_{F}\right)$ is minimized and

$$
\|A B-C R\|_{F}=\mathcal{O}\left(\|A\|_{F}\|B\|_{F} / \sqrt{c}\right)
$$

[^2]
Column/Row Sampling Without Replacement ${ }^{8}$

Problem Statement: Approximate the sum of n rank-one matrices,

$$
A B=\sum_{k=1}^{n} A_{* k} B_{k *}, \text { where } A_{* k} B_{k *} \in \mathbb{R}^{m \times p}
$$

Lemma: If $p_{k}=\frac{1}{n}$, then with probability $1-\sigma$

$$
\|A B-C R\|_{F}^{2}=\mathcal{O}\left(\frac{1}{\sigma}\left(\frac{n}{c}-1\right) \sum_{k}\left|A_{* k}\right|^{2}\left|B_{k *}\right|^{2}\right)
$$

Advantage: For $\mathrm{n}=\mathrm{c}$, the above error becomes zero, while in Sampling with Replacement this was not the case.
Disadvantage: For uniform sampling ($p_{k}=\frac{1}{n}$), the error can blow up. For non-uniform sampling, error analysis is hard.

[^3]
Element-Wise NU Sampling ${ }^{910}$

Problem statement: Approximate each element of $A B$ matrix, i.e., $(A B)_{i, j}$ for all $i \in[m]$ and $j \in[p]$

[^4]
Element-Wise NU Sampling ${ }^{910}$

Problem statement: Approximate each element of $A B$ matrix, i.e., $(A B)_{i, j}$ for all $i \in[m]$ and $j \in[p]$
A sampling approach:

- Fix two sets of probabilities $p_{i, j}$ and $q_{j, k}, i=1, \ldots, m, j=1, \ldots, n$, $k=1, \ldots, p$ such that $0 \leq p_{i, j} \leq 1$ and $0 \leq q_{j, k} \leq 1$.
- Each element (i, j) of A and B are randomly and independently either zeroed out or kept and rescaled, constructing matrices C and R.

$$
C_{i, j}=\left\{\begin{array}{ll}
\frac{A_{i, j}}{p_{i, j}}, & \text { with prob. } p_{i, j} \\
0, & \text { otherwise }
\end{array}, R_{i, j}=\left\{\begin{array}{ll}
\frac{B_{i, j}}{q_{i, j}}, & \text { with prob. } q_{i, j} \\
0, & \text { otherwise }
\end{array} .\right.\right.
$$

- Approximate $A B$ with $C R$ multiplication In other words, use random matrices E and D

$$
C=A+E, R=B+D \rightarrow C \text { and } R \text { are sparse. (Random Sparsification) }
$$

[^5]
Element-Wise NU Sampling (Some Lemmas) ${ }^{1112}$

Some lemmas:

- For any sampling probabilities:

$$
\begin{aligned}
& \mathbb{E}\left((C R)_{i, j}\right)=\sum_{k=1}^{n} \mathbb{E}\left(C_{i, k}\right) \mathbb{E}\left(R_{k, j}\right)=(A B)_{i, j} \\
& \operatorname{Var}\left((C R)_{i, j}\right)=\sum_{k=1}^{n} \frac{A_{i, k}^{2}}{p_{i, k}} \frac{B_{k, j}^{2}}{q_{k, j}}-\sum_{k=1}^{n} A_{i, k}^{2} B_{k, j}^{2}
\end{aligned}
$$

- From these, it's easy to bound $\mathbb{E}\left(\|A B-C R\|_{2}\right)$. (Notation: The spectral norm is $\|A\|_{2}=\sup _{x \in \mathbb{R}^{n}, x \neq 0}|A x| /|x|$.)
- We have $\|A B-C R\|_{2}=\mathcal{O}\left(\|A\|_{F}\|B\|_{F} / \sqrt{c}\right)$ for probabilities

$$
p_{i, j} \propto\left\{\begin{array}{ll}
A_{i, j}^{2}, & \text { if }\left|A_{i, j}\right|>T \\
\left|A_{i, j}\right|, & \text { otherwise }
\end{array}, q_{i, j} \propto \begin{cases}B_{i, j}^{2}, & \text { if }\left|B_{i, j}\right|>T \\
\left|B_{i, j}\right|, & \text { otherwise }\end{cases}\right.
$$

[^6]
Sequential Matrix Multiplication ${ }^{13}$

Problem statement: Approximate products of a sequence of non-negative matrices, e.g., $A B C, A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, and $C \in \mathbb{R}^{p \times q}$. Idea: Do Random walks in a graph representation of the input matrices and identify all high-valued entries in non-negative matrix products.

[^7]
Sequential Matrix Multiplication ${ }^{13}$

Problem statement: Approximate products of a sequence of non-negative matrices, e.g., $A B C, A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, and $C \in \mathbb{R}^{p \times q}$. Idea: Do Random walks in a graph representation of the input matrices and identify all high-valued entries in non-negative matrix products.

[^8]
[^0]: ${ }^{1}$ Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

[^1]: ${ }^{4}$ Mahoney et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006
 ${ }^{5}$ Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

[^2]: ${ }^{6}$ Mahoney et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006
 ${ }^{7}$ Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

[^3]: ${ }^{8}$ Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

[^4]: ${ }^{9}$ Mahoney et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006
 ${ }^{10}$ Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

[^5]: ${ }^{9}$ Mahoney et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006
 ${ }^{10}$ Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

[^6]: ${ }^{11}$ Mahoney et al., "Fast Monte Carlo algorithms for matrices I: Approximating matrix multiplication," SIAM J. Comput' 2006
 ${ }^{12}$ Drineas et al., "Fast Monte-Carlo algorithms for approximate matrix multiplication," FOCS' 2001.

[^7]: ${ }^{13}$ Cohen et al., "Approximating matrix multiplication for pattern recognition tasks," J. Alg' 1999.

[^8]: ${ }^{13}$ Cohen et al., "Approximating matrix multiplication for pattern recognition tasks," J. Alg' 1999.

